УДК 621.979:621.753.5.001

Смирнов А. М. Сорокина О. С.

МОДЕЛИРОВАНИ ОРГАНИЗАЦИОННО-ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ УЧАСТКОВ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ЛИСТОВОЙ ШТАМПОВКИ

В условиях рыночной экономики одним из важнейших факторов является сокращение времени и средств на подготовку производства. Для этого используются различные средства, в том числе и компьютерные технологии, основанные на методах оптимизации. Но они требуют применения дорогостоящих программных комплексов.

В основе методики выбора рационального технологического процесса заложены два принципа: технический и экономический. Технический принцип предполагает совокупность технологических решений, на основании которых формируется технологический процесс, обеспечивающий безусловное выполнение технологических условий и точность требований, указанных в чертеже детали. Экономические принципы, заложенные в технологические решения, должны обеспечить приведенную минимизацию временных и материальных затрат как в основном, так и во вспомогательном производстве. Анализ вариантов изготовления листоштампованных деталей может быть достаточно быстро выполнен с использованием системы моделирования организационно-технологических структур цехов и участков листовой штамповки.

В зависимости от условий производства для решения поставленной задачи могут быть применены методы оптимизации с использованием критериев минимизация себестоимости, либо минимизация трудоемкости, либо равномерная загрузка оборудования [1–3].

Целью настоящей работы является создание варианта системы, использующей доступные программные и аппаратные средства

Решение поставленной задачи требует применения специальных методов оптимизации на базе достаточной трудоемких вычислительных процедур.

При ограниченной номенклатуре изделий в условиях экономического кризиса целесообразно создание системы, позволяющей решить поставленную задачу путем простого перебора. Анализ вариантов изготовления листоштампованных деталей может быть достаточно быстро выполнен с использованием системы моделирования организационно-технологических структур цехов и участков листовой штамповки.

Принцип функционирования системы моделирования организационно-технологических структур цехов и участков листовой штамповки иллюстрируется рис. 1.

Блок сравнения технологических процессов базируется на целевой функции минимальной себестоимости, а блок расчета параметров цеха на целевой функции равномерной загрузки оборудования.

Результаты расчета из первого блока используются в качестве входных данных для второго блока.

Для условий небольших объемов производства при ограниченных номенклатурах и типом оборудования данная система может быть реализована на базе MS Excel. Она включает:

- 1. Модуль «Формирование исходных данных» предназначен для формирования данных по деталям-представителям, выбранном технологическом оборудовании, технологической оснастке, организационно-технологической структуре проектируемого производства.
- 2. Модуль «Программа». В данном модуле рассчитывается программа выпуска и запуска по деталям, деталям-представителям, стоимость годового запуска по деталям и деталям-представителям, стоимость годового запуска по участку. При определении массы годового запуска деталей-представителей происходит формирование сначала по группе исходного материала (черные металлы, цветные металлы, неметаллы), затем по виду исходного материала (рулон, лента, лист, полоса), с занесением в соответствующие ячейки.

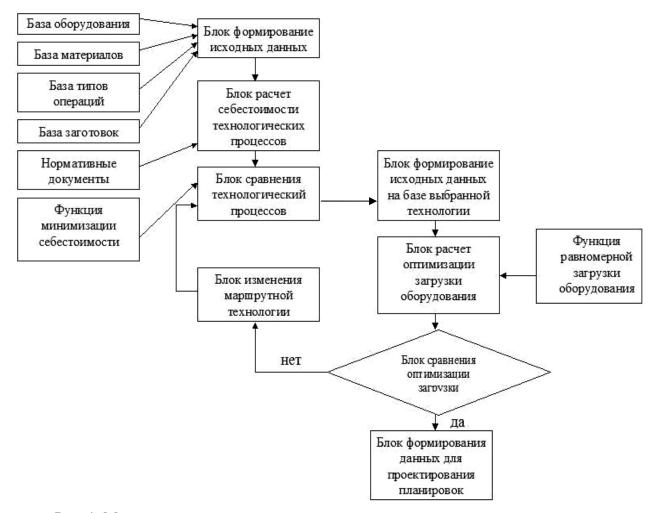


Рис. 1. Макроструктура системы моделирования

- 3. Модуль «Технологическое оборудование». В нем определяется количество оборудования по деталям и штампооперациям и по моделям, а также затраты на оборудование по деталям и деталям-представителям и по участку, коэффициент загрузки оборудования по моделям и участку, трудоемкость наладочных работ по видам оборудования и по участку. Количество оборудования по моделям уточняется проектантом, в зависимости от полученных результатов (соответствующие строки помечены).
- 4. Модуль «Численность работающих». Предназначен для расчета численности всех категорий работающих с разделением по сменам и заработной платы работающих.
 - 5. Модуль «Физические ресурсы» разделен на следующие подмодули:
 - Основные материалы.

Рассчитывается масса годового запуска по деталям, деталям-представителям, участку и предполагаемые затраты по группам материала (черные металлы, цветные металлы, неметаллы) и виду (лист, рулон и т. д.)

– Отходы.

Определяется годовая масса отходов по деталям, деталям-представителям, участку по группам материала (черные металлы, цветные металлы, неметаллы), доход от реализации отходов по деталям, деталям-представителям, участку.

– Штампы и приспособления.

Рассчитывается годовой расход штампов и приспособлений и их количество по штампооперациям и на участке, а также затраты на их приобретение.

-Энергоносители.

Определяется годовой расход и затраты на все виды энергоносителей по группам оборудования и участку.

– Вспомогательные материалы.

Рассчитывается годовой расход и затраты на используемые виды вспомогательных материалов на технологические цели и для обеспечения работоспособности всех видов оборудования по деталям, деталям-представителям и участку.

- 6. Модуль «Складское хозяйство» предназначен для расчета площадей и затрат на складское хозяйство и разделен на следующие подмодули:
 - Склад исходных материалов.
 - Склад полуфабрикатов.
 - Склад готовой продукции.
 - Склад штампов и приспособлений.
- 7. Модуль «Площади цеха». Определяются площади по группам оборудования, по участку и исходные размеры производственного подразделения. Затем проектантом по принятой ширине его длина.

Результатом расчетов является таблица составляющих технологической стоимости (табл. 1) для различных маршрутов изготовления деталей. Проектант имеет возможность в процессе работы с системой просмотреть результаты, вывести данные по загрузке листоштамповочного оборудования и провести его последовательную коррекцию до получения положительных результатов.

Таблица 1 Структура затрат расчета вариантов технологических процессов на этапе их выбора

Изменение элементов затрат						
	Вариант 1		Вариант N	Рекомендуемый вариант		
1. Затраты на материал	Цм1		Цм _N	Цм _і		
2. Основные рабочие						
2.1. Основная 3/П	$3прг_1$		3 прг $_{ m N}$	Зпргі		
2.2. Дополнительная 3/П 14%	ДЗпр1		ДЗпр _N	ДЗпр _і		
2.3. ECH 26%	ЕСН(Зпрг + ДЗпр)		ЕСН(Зпрг + ДЗпр)	ЕСН(Зпрг + ДЗпр)		
3. Наладчики						
3.1. Основная 3/П	Знал ₁		Знал _N	Зналі		
3.2. Дополнительная 3/П 14%	ДЗнал1		ДЗнал _N	ДЗнал _і		
3.3. ECH 26%	ЕСН(Знал + ДЗнал)		ЕСН(Знал + ДЗнал)	ЕСН(Знал + ДЗнал)		
4. Затраты на инструмент	Цшдп ₁		Цшдп _N	Цшдп _і		
5. Себестоимость машины часа оборудования	Смч1		C м Ψ_N	Смчі		
5.1 Основная электроэнергия	Цэлг $_1$		Цэлг $_{ m N}$	Цэлг _і		
5.2 Амортизация	AM_1		AM_N	A_{M_i}		
5.3 Затраты на ремонт	Црем ₁		Црем _N	Цремі		
5.4 Затраты на здание	Цзд1		Цзд _N	Цзд _і		
6. Удельная стоимость оборудования	Ку ₁		Ку _N	Ky _i		
ИТОГО технологическая стоимость детали	C_{T_1}		C_{T_N}	Сті		

По результатам первого этапа формируются экономически целесообразные маршруты отработки для всей номенклатуры деталей, рассчитываются основные организационнотехнологические параметры производства (табл. 2). Оценка результатов может быть выполнена в зависимости от поставленной задачи. В условиях ограничения затрат на оборудование целесообразно выполнить более равномерную его загрузку. Пользователь системы может изменить исходные данные, путем замены варианта с использованием мало загруженного оборудования и переходом на следующий менее экономичный возможный вариант маршрута обработки, исключающий применение этого оборудования. Таким образом, этот вид оборудования исключается из списка, что позволяет сократить затраты (табл. 3).

Таблица 2 Результаты расчета загрузки оборудования, полученные на первом шаге

Модель оборудования	АИДА	КОМЕССА	К2534	К3535	К2535АВТ	K2534ABT	К3537АВТ
Годовой запуск по деталям шт. Пгд = сумма (пгдј)	80640	80640	4250977,9	689301,9	3058879,4	29484	2001142,5
Годовой запуск по деталям- представителям шт. Пгд = сумма (пгді)	80640	80640	4250977,5	68930,9	3058679,4	29484	2001142,5
Количество оборудования по моделям (рассчитанное с учетом средней нагрузки), шт. Qpc = сумма (Qдпс)	0,02	0,08	3,35	0,72	1,50	0,02	3,15
Количество оборудования по моделям (рассчитанное с учетом фактической нагрузки), шт. Орф = сумма (Одпф)	0,02	0,07	2,75	0,59	1,23	0,01	2,59
Количество оборудования по моделям (округленное) по средней загрузке шт. Qoc = округл (сумма (Qдпі))	1	1	4	1	2	1	4
Количество оборудования по моделям (округленное) по фактической загрузке шт. Соф = округл. (сумма (Одпј))	1	1	3	1	2	1	3
Коэффициент загрузки по моделям расчетный (с учетом средней нагрузки) кз = Qpc / Qoc	0,02	0,08	0,84	0,72	0,75	0,02	0,79
Коэффициент загрузки по моделям расчетный (с учетом фактической нагрузки) кз = Qpф / Qoф	0,02	0,07	0,92	0,59	0,61	0,01	0,86
Число наладок оборудования по моделям Кналм = сумма (Кналі)	4,00	4,00	50,00	10,00	38,00	2,00	24,00
Количество оборудования по моделям принятое (уточняется проектантом) шт. Qo	1	1	3	1	2	1	3
Коэффициент загрузки фактический по моделям кзп = Qpф / Qo	0,02	0,07	0,92	0,59	0,61	0,01	0,86

Таблица 3 Результаты расчета загрузки оборудования, полученные на последнем шаге

Модель оборудования	К2534	К3535	K2535ABT	K2534ABT	K3537ABT
Годовой запуск по моделям шт. Пгд = сумма (Пглі)	4302133,5	689301,9	3058879,4	1982240	2001142,5
Годовой запуск по деталям-представителям шт. Пгдп = сумма (Пдпі)	40302133,5	889301,9	3058879,4	1962240	2001142,5
Количество оборудования по моделям (рассчитанное с учетом средней нагрузки), шт. Qpc = сумма (Qдпс)	3,39	0,72	1,50	0,97	3,15
Количество оборудования по моделям (рассчитанное с учетом фактической нагрузки), шт. Qрф = сумма (Qдпф)	2,78	0,59	1,23	0,79	2,59
Количество оборудования по моделям (округленное) по средней нагрузке шт. Qoc = округл (сумма (Qpi))	4	1	2	1	4
Количество оборудования по моделям (округленное) по фактической нагрузке шт. Qоф = округл (сумма (Qpi))	3	1	2	1	3
Коэффициент загрузки по моделям расчетный (с учетом средней загрузки). кз = Qpc / Qoc	0,85	0,72	0,75	0,97	0,79
Коэффициент загрузки по моделям расчетный (с учетом фактической загрузки) кз = Qpф / Qoф	0,93	0,59	0,61	0,79	0,88
Число наладок оборудования по моделям Кналм = сумма (Кналі)	52,00	10,00	36,00	28,00	24,00
Количество оборудования по моделям, принятое (уточняется проектировщиком), шт. Qo	3	1	2	1	3
Коэффициент загрузки фактический по моделям кзп = Qpф / Qo	0,93	0,58	0,61	0,79	0,86

ВЫВОДЫ

- 1. Разработан алгоритм расчета загрузки оборудования цеха (участка) листоштамповочного производства, позволяющий выбрать рациональный вариант маршрутной технологии при ограниченной номенклатуре продукции.
- 2. Предложен малозатратный вариант реализации разработанного алгоритма с использованием среды Excel MS

ЛИТЕРАТУРА

- 1. Егоров М. Е. Основы проектирования машиностроительных заводов / М. Е. Егоров. М. : Высшая школа, $1969.-480\ c.$
- 2. Зимин В. В. Проектирование холодноштамповочных цехов автоматизированных производств [учебное пособие] / В. В. Зимин, И. Е. Семенов, А. М. Смирнов. М.: Мосстанкин, 1988. 83 с.
- 3. Греджук И. Ф. Решение задачи оптимизации размещения кузнечного производства / И. Ф. Греджук, В. М. Козуб // Технология производства, научная организация труда и управления. М. : НИИмаш, 1973. C.45-50.

Смирнов А. М. – канд. техн. наук, проф. МГТУ «Станкин»;

Сорокина О. С. – магистр МГТУ «Станкин».

МГТУ «Станкин» — Московский государственный технологический университет «Станкин», г. Москва, Россия.

E-mail: smirn.stankin@mail.ru